欢迎光临
手机网站 | 联系我们:86-021-59260058 | 加入收藏
  • 技术文章

    气动薄膜调节阀结构组成及工作原理

    2023-02-28 16:02:40  来源:SH

    气动薄膜调节阀结构组成及工作原理

    随着工业自动化程度的不断提高,调节阀作为自动调节系统的*终执行元件,在化工企业得到越来越广泛的应用,调节阀应用的好坏直接关系着生产的质量与安全。因此,结合长期从事气动元件的设计,增压设备选型及安装、调试及维护的经验,谈一谈气动薄膜调节阀结构组成、工作原理及选型。

    一、气动薄膜调节阀结构组成及工作原理

    气动薄膜调节阀是由工作气源压力的变化使薄膜的位置发生变化,位置发生变化的薄膜带动阀杆运动来驱动阀芯位置的变化,或开或闭,在阀门定位器的作用下,阀芯可以停留在任何需要的位置。薄膜调节阀的种类有两种,即,气开式和气闭式。因为薄膜调节阀的执行机构,即,薄膜执行机构只有单作用一种形式,由于其复位弹簧安装的位置不同,可有气开或气闭两种。对于薄膜调节阀的选型是要根据工艺设备的工艺要求而确定,用错了会设备的安全有破坏作用。

    举个例子:有一台气罐,储存气体的压力控制在490kPa-510kPa之间,配置有进气阀、出气阀、安全放散阀。气罐有压力检测,出口气体有流量检测。工艺要求是气罐的压力必须在工作压力范围之内,气罐压力达到520kPa时有故障报警,达到550kPa时为重故障报警,并且由连锁必须关闭进/出口阀、打开放散阀泄压,那么对这三个阀门的配置要求是不一样的。

    对于进口阀的要求是:气罐压力低时开大,压力高时关小,连锁动作时关闭,因此选用气开式,调节器选用反作用;对于出口阀的要求是:出口流量低时开大,出口流量高时关小,连锁动作时关闭,因此选用气开式,调节器选用反作用;对于放散阀的要求是:气罐压力低于510kPa时关闭,高于510kPa时开大,连锁动作时打开,因此选用气闭式,调节器选用正作用。

    其调节原理为:以压缩空气作为动力,通过电气阀门定位器来控制气源压力的大小,使空气作用于调节阀的橡胶膜片,膜片的收缩与扩张再带动阀杆上下动作,从而达到控制介质的目的。 调节器(DCS信号)通过电气阀门定位器将电信号转换为气信号作用在调节阀的膜片上。膜片压缩弹簧带动调节阀阀芯动作来控制阀门开度,从而实现对被调介质的调节。根据工艺需要,调节阀分为气开阀(故障关)和气关阀(故障开)。

    气动薄膜调节阀结构组成及工作原理

    1 、气动薄膜结构组成

    气动执行器由执行机构和调节机构组成。执行机构包括:气动薄膜、气动活塞、气动长行程3种,调节机构为:阀、闸板、调节阀等,有直、角行程两种。

    2、气动薄膜调节阀工作原理

    0.2~1kg/cm的信号压力输人薄膜气室中,产生的推力使推杆部件移动、弹簧被压缩产生的反作用力与信号压力在薄膜上产生的推力相平衡。推杆的移动即是气动薄膜执行机构的行程。正作用式:当薄膜气室内输人信号压力时,使推杆部件向下移动。反作用式:当薄膜气室内输人信号压力时,使推杆部件向上移动。 

    二、气动薄膜调节阀结构组成及工作原理的选型

    调节阀是直接接触工艺介质的控制机构,承受着流体的压力、温度、冲刷、腐蚀和磨损。恶劣工况下不乏调节阀卡塞、振动、泄漏、流量特性失真甚至 阀芯脱落的现象。在长期的机械疲劳、热冲击和化学腐蚀作用下,调节阀的使用性能逐渐下降。实际上调节阀的使用寿命难以估计,*重要的因素是需要设计者了解工艺要求及使用工况。

    调节阀由电动执行机构或气动执行机构和调节阀两部分组成。调节阀通常分为直通单座式调节阀和直通双座式调节阀两种,后者具有流通能力大、不平衡办小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。气动薄膜调节阀的发展自20世纪初始至今已有八十年的历史,先后产生了十个大类的调节阀产品,自力式阀和定位器等。调节阀是*终控制元件的泛使用的型式。其他的*终控制元件包括计量泵、调节挡板和百叶窗式挡板(一种蝶阀的变型)、可变斜度的风扇叶片、电流调节装置以及不同于阀门的电动机定位装置。尽管调节阀得到广泛的使用,调节系统中的其它单元大概都没有像它那样少的维护工作量。在许多系统中,调节阀经受的工作条件如温度、压力、腐蚀和污染都要比其它部件更为严重,然而,当它控制工艺流体的流动时,它必须令人满意地运行及*少的维修量。

     

     

    气动薄膜调节阀结构组成及工作原理的特性

    线性特性

    线性特性的相对行程和相对流量成直线关系。单位行程的变化所引起的流量变化是不变的。流量大时,流量相对值变化小,流量小时,则流量相对值变化大。

    抛物线特性

    流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。

    等百分比特性

    等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调节精度。

    从上述三种特性的分析可以看出,就其调节性能上讲,以等百分比特性为,其调节稳定,调节性能好。而抛物线特性又比线性特性的调节性能好,可根据使用场合的要求不同,挑选其中任何一种流量特性。

    气动薄膜调节阀结构组成及工作原理的检查校验

    气动薄膜调节阀是工艺生产过程自动调节系统中极为重要的环节。为了确保其安全正常运行,在安装使用前或检修后应根据实际需要进行必要的检查和校验。

    1 始终点偏差校验

    将0.2kg/cm2的信号压力输入薄膜气室,然后增加信号压力至1.0kg/cm2, 阀杆应走行程,再降低信号压力至0.2 kg/cm2。在1.0kg/cm2和0.2kg/cm2处 测量阀杆行程,其始点偏差和终点偏差不应超过允许值。

    2 全行程偏差校验

    将0.2 kg/cm2的 信号压力输入薄膜气室,然后增加信号压力至1.0 kg/cm2,阀杆应走行程。测量全行程偏差不超过允许值。

    3 非线性偏差校验

    将0.2 kg/cm2的信号压力输入薄膜气室,然后以同一方向增加信号压力至1.0 kg/cm2,使阀杆作全行程移动,再以同一方向降低信号压力至0.2 kg/cm2,使阀杆反向做全行程 移动。在信号压力升降过程中逐点记录每隔0.08 kg/cm2的信号压力时相对应的阀杆行程值(平时校验时可取5点)。输入信号 压力——阀杆行程的实际关系曲线与理论直线之间的*大非线性偏差不应超过允许值。

    4 正反行程变差校验

    校验方法与非线性偏差校验方法相同,按照正反信号压力——阀杆行程实际关系曲线,在同一信号压力值时阀杆正反行程值的*大偏差不应超过允许值。

    5 灵敏限校验

    输入薄膜气室信号压力,在0.3、0.6、0.9 kg/cm2的行程处,增加和降低信号压 力,测量当阀杆移动0/01mm时信号压力变化值,其*大变化值不应超过允许值。

    气动薄膜调节阀结构组成及工作原理

    在调节阀的选用中,必须首先考虑是否能达成工艺目的,满足控制要求以及长期稳定使用。调节回路参数的整定耗时费力,其重要的原因便是调节阀的流量特性很难做到理想曲线。控制器采用计算机技术已能使P I D算法接近数学期望值,但通过调节阀动作得到的流量特性总是偏离理想值,需要多次调整才能稳定。对于单回路而言,可以放宽控制强度得到较好的稳定性;而串级回路中,副回路需要较好的快速响应及自我稳定性才能跟随主回路的变化。在化工企业中常用的串级调节回路主回路为温度(液位)调节,副回路为流量调节,如图1所示。

    流量回路响应快速,易造成调节阀振荡,使整个串级回路波动。相对P形阀芯,采用V形阀芯有利于提升控制品质。它具有不对称结构,定点径向力震动性小,有利于阀芯稳定,延长使用寿命,并且远离流体冲刷区,有利于保护阀芯/座,避免湍流损坏此外,等百分比流量特性是严格的等百分比曲线,在任何口径下,不改变曲线特性,工作范围20%~90%。

    在化工装置中,常存在有多种有毒介质。在CS2装置中典型的有毒介质CS2。从安全、环保的角度应采用低泄漏阀。调节阀的泄漏源主要为阀杆与填料间隙,为保证阀杆动作自如,必须与填料有一定间隙。对于低沸点介质很容易从此处泄漏出来。

    采用波纹管密封可解决这个问题。传统的波纹管受材质和加工工艺限制,使用寿命不长。阀门应具有金属波纹管密封技术,这样才能防止任何有毒及易燃爆气体散逸到大气中,采用软密封的阀芯/座配合,可达到零内泄漏,且使用次数(阀门全开到全关)在160万次以上,同时可以加载波纹管检漏装置,更能保证阀门的安全性,保护人身及环境安全。

    气动薄膜调节阀结构组成及工作原理

    总结,通过本文的讲解,相信大家对气动薄膜调节阀认识会越来越深入,知道了气动薄膜调节阀的特性有线性特性、抛物线特性及等百分比特性等知识,希望本文能对大家的工作有一定的指导作用。在装置中液态硫磺介质在一定的温度下维持液态,如遇冷即结晶,工艺上此类管道设计为夹套管。调节阀也必须为夹套阀。许多厂家为降低制造成本,采取夹套外购的方式,将夹套与阀体固定在一起,通过夹套壁传热。金属之间很难作到无间隙,造成传热死角。要选择将夹套焊接在阀体上,采用下进上出的方式,独立循环系统使得介质能够均匀分布到阀体的各个部分;不改变原阀门的尺寸,方便安装,拆卸简便;结构小巧独立,不受管道干扰,也不对其他管件产生影响。这种夹套必须经过水压试验及探伤,使成本上升,但无保温死角。以上从工艺角度讨论了调节阀选型的特殊要求,在满足工艺需要的前提下,阀门的使用寿命与工作状况直接相关。在计算书上除了开度、噪声等结果,还应密切注意出口流速的值,原则上液体的出口流速不应 >3 m/s,而对于气体或蒸汽则不应>3Mach,在选型的过程中,如果忽略了这个值而单纯地看开度和噪声,过高的流速会造成对阀门内件的损害,从而使阀门的使用寿命不能得到保障。

     


    留言
    申弘阀门 先生
    谷瀑服务条款》《隐私政策